ディー・クルー・テクノロジーズ Blog

bookmark_borderスケーリング則/ムーアの法則

システムLSI(SoC: System on a Chip)は、約3年ごとに0.7倍のペースで微細化が進んでいます。この微細化のトレンドのことは、スケーリング則やムーアの法則、またはデナードの法則とも呼ばれています。

スケーリング則では0.7倍のスケールダウンにより単位面積あたりの集積密度が2倍になり、同一電圧で1.7倍高速化し、消費電力が半分になる性能向上が図られます。スケーリング則と素子構造および回路パラメータとの関係について、詳しくは下図を参照してください。

下図でKはスケーリング係数(<1)であり、約3年でx0.7 です。

図1スケーリング則(デナード則)

次は、LSI低電圧化の流れについて説明します。

bookmark_borderシステムLSIの低消費電力化技術(6)  

昨今はチャージリサイクリングによる低消費電力化の研究が活発です。その1つを今日はお話します。

チャージリサイクリングでViを下げる

以前の記事で解説した数式を1つ思い出していただきたいのですが、CMOSLSIの消費電力の算出で、Pcは(1)「C・Vi・Ve・f」もしくは(2)「C・Ve2・f」で表されます、と申し上げました。このうちViを、「チャージリサイクリング」と呼ばれる低消費電力化を図る技術についてご紹介します。

チャージリサイクリング技術とは?


ブログをご覧の皆様には基本的レベルの事ですが、重要なのであえて申し上げますと、LSIの内部ノードは、演算動作に応じてVeと0の間を遷移します。内部ノードを、0→Veにする時は電源から所定のノードへ電荷を供給し、Ve→0にする時はノードの電荷をGNDへ引き抜いています。

演算動作中、演算を実施しているノードと、これから演算を開始するノードがLSI内で同時に存在します。すなわち“Ve”へ充電したいノードと“0”へ放電したいノードが混在する。ということが頻発します。この状態でノード毎に充放電すれば、当たり前ですが消費電力量は増えますね。

チャージリサイクリングとは、あるノードをVe→0にする時、その電荷をすべてGNDへ捨てるのはもったいないので、電荷の一部を0→Veにしたい別ノードへ渡して再利用する技術なのです。

なんとも賢い方法ですね。原理図を示します。

図16 チャージリサイクリング技術(原理図)

チャージリサイクリングのメカニズム


メカニズムを簡単に説明します。

ノード[A]、[B]を各々Ve→0、0→Veにする場合、t1のタイミングでS1をONさせ電荷分配によってノード[A]および[B]をVe/2にします。次いでt2のタイミングでS2(GND側スイッチ)、S3(電源側スイッチ)をONし、ノード[A]、[B]を各々目標のVe/2→0、Ve/2→Veにします。この過程において、ノード[A]の放電する電荷の1/2はノード[B]を充電するために再利用されている。このチャージリサイクリング技術によって、消費電力を1/2に低減する事ができるわけです。

チャージリサイクリング技術の強誘電体メモリ応用例

さらに、図17にこの技術を強誘電体メモリ(FeRAM)へと応用した事例を示します。従来強誘電体メモリは、セルプレート線に容量値の大きい強誘電体メモリセルが接続されており、その充放電時の消費電力が大きな問題でした。

図17 強誘電体メモリ(FeRAM)への応用事例

メモリアクセスによってセルプレート選択線CP1=“1”(選択)からCP2=“1”へ切り換えるとき、まず、電荷回収用容量線CP0とCP1をSW1によってONさせ、CP1とCP0とを電荷分配させる。この時、CP1の電荷の一部がCP0へと転送されます。次にCP0とCP2をSW2によってONさせると、CP0の電荷の一部がCP2へ転送されます。
すなわち、放電すべきCP1の電荷の一部が、スイッチドキャパシタ動作によってCP1→CP0→CP2のパスで、充電すべきCP2で再利用することができるのですね。この時 CPn/CP0値を最適化すれば、およそ50%近い電荷再利用効率を得る事ができた、という事例になります。

「容量の充放電」がポイント

ポイントは、CMOSLSIで使われる電力のほとんどが「容量の充放電」で費やされている事実です。ですから、チャージリサイクリングのような「容量の充放電」をコントロールする技術は低消費電力化において重要な技術です。言い換えるなら、LSI回路設計における低消費電力化とは「ある大きな容量のノードを放電する時、その電荷をどこか他のノードに利用できないか?」が本質といっても過言ではありません。(その解決策を考えるのがLSI技術者の面白いところでもありますね)

さて、システムLSIの低消費電力化技術についてはひとまず終え、次は高速化技術についてご紹介できればと思います。

bookmark_borderシステムLSIの低消費電力化技術(5)

今日はアルゴリズムの工夫による低消費電力化についてです。

動画処理の世界では、動画をフレームで記録する際に、データ線の遷移確率を減らすデータ表現等が次々に発表されていきました。今日は私が以前映像録画機器で用いた事例として「符号付き絶対値表現」を用いた低消費電力化手法を紹介いたします。

ビデオ信号のフレーム差分データ処理

記録中の映像フレームで、絵の一部が動いたか、そうではないか、をLSIで検出処理する場合、現在のフレームと1フレーム前とのビデオ信号の差を判別する処理が必要となります。15図で示した通り、この時必要なフレーム差分データは、一般に大きな容量ノードであるバスラインあるいはチップ外へ出力されることが多いので、消費電力が大きくなりがちです。またビデオ信号はフレーム間の相関が大きく、差分処理の出力が、「少し大きい」あるいは「少し小さい」値となる場合が多いです。

デジタルデータで処理する場合、通常「2の補数」で表現します。図15にも示しましたが、1サンプルごとにMSBからLSBまで表現する場合、ほとんどのビットが赤数字で示したようにデータ遷移してしまいます。このビットのデータ遷移=電力消費の発生ですから、大きな電力消費をしていることになります。

図15 符号付き絶対値表現による低電力化

符号付き絶対値表現

これに対し図15の中央のように「符号付き絶対値表現」を用いますと、この仕組みでは専用の符号ビットを持たせていますので、符号ビット自身は頻繁にデータ遷移しますが、一方で絶対値データ値のビット(LSB近傍を除く)はほとんどデータ遷移しません。データ遷移がなければ電力消費しないので、「符号付き絶対値表現」を用いると、データバスやLSIチップ間配線の様な(消費電力が大きくなる)大容量ノードでのデータ遷移の確率を減らすので、十分な低消費電力化が見込めます。

この方法によって、世の中のビデオカメラの画像信号のフレーム間処理や、水平走査線間処理等の相関の大きな信号処理の低消費電力化に成功するなど、家庭録画機器の低消費電力化と性能アップに特に有効な手法となりました。

次はチャージリサイクリングによる低消費電力化について、ご紹介します。